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Executive Summary 
 Computational nanomechanics is an emerging field that exists at the union of 
traditionally independent research areas, spanning not only computation and mechanics, 
but also physics, chemistry, and materials science. This interdisciplinary nature calls for 
cross fertilization between these many research areas. As a vital element of 
nanotechnology, computational nanomechanics must become a core feature of future 
curricula of engineering schools.  
 The USACM workshop on computational nanomechanics (sponsored by NSF, 
ARO, USACM, and ORNL-FMP) took place in Chicago on April 26 and 27, 2004. The 
workshop consisted of a tutorial session of six lectures, one panel session on 
nanomechanics research, one panel session on nanomechanics education, and one poster 
session. The two main topics of this workshop were education and research in 
nanomechanics. Reflecting the education facet were the lectures for junior scientists and 
the panel discussion on curriculum development. The research facet, as reflected through 
both lecture and panel discussion formats, emphasized complementing coverage of 
various length and time scales involved in nanomechanics.  
  In addition to providing a platform for scientific exchanges, this workshop also 
focused on the assessment of computational nanomechanics on education and research, 
and made recommendations to government agencies and the community at large. The 
following are recommendations from the group of workshop participants: 
• Education in nanomechanics should be incorporated into existing engineering 

curricula instead of standing alone in new and separate elective courses. 
• Integration of nanostructure elements and the accompanying nanomechanics are 

important to emerging nanotechnology, and its research and development 
deserves a concerted effort within the academic community and beyond. 

• The issue of multiple time scales in nanomechanics has not received as much 
attention as that of multiple length scales, and should be a focus of future studies.  

• Nanomechanics of the interface between soft biological systems and harder solid 
structures at the nanoscale is important scientifically, and its study may also lead 
to solutions to pressing energy issues. 

• Nanomechanics research is most fruitful through sincere cross fertilization of 
physics, chemistry, materials science, continuum mechanics, and computation. 
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1. Background of the Workshop 
The workshop on Computational Nanomechanics of Materials took place to 

address the need of cross fertilization among researchers in computation, physics, 

chemistry, materials, and mechanics, as well as the importance of incorporating 

nanomechanics in engineering curricula. In comparison to other mechanics 

workshops/symposia (Ghoniem, Busso, and Huang 2003; Campbell et al 1998), this 

workshop focuses on cross fertilization in both research and education.  

Cross fertilization has always been a goal in science, and it is an absolute 

necessity in computational nanomechanics. Historically, cross fertilization emerged in the 

field of nanoscale mechanics, which emphasizes dislocations, earlier than in mechanics 

of nanostructures. Along each of the two branches – nanoscale mechanics and mechanics 

of nanostructures, research has progressed in an interdisciplinary manner at various levels. 

The following paragraphs offer a glimpse of the interdisciplinary nature in terms of 

computation and mechanics, and their interface with materials and physics and chemistry.  

Scale bridging methods in computational mechanics go back more than 30 years 

(see Mote 1971). For review article on various efforts in mid and late 70s see Noor (1988) 

and Dong (1983). In 80s and 90s various Local Enrichment Methods (LEM) where the 

fine scale function were used to embed discontinuities (Belytschko 1988; Fish and 

Belytschko 1988; Belytschko and Fish 1989; Armero and Garikipati 1996; Simo et al 

1993) became very popular. Variational Multiscale Method (VMS) (Hughes 1995) and 

Mathematical Homogenization (Babuska 1975; Benssousan et al 1978; Guedes and 

Kikuchi 1990) fall into this category of methods. An attractive feature of these methods is 

that fine-scale features can be eliminated either on the coarse scale element level or at the 

coarse scale material point resulting in embedded fine-scale physics at the coarse scale 

without significantly increasing the cost of coarse scale computations. In LEM fine scale 

features are only approximated, and their gross response is injected into the coarse scale. 

The need to control fine scale approximations without compromising the sparsity of 

discrete approximations produced several enrichment schemes including the s-version of 

the finite element method (Fish 1992; Fish and Markolefas 1993; Fish et al 1994; Park et 
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al 2003), various multigrid-like scale bridging methods (Fish and Belsky 1995a and 

1995b; Fish et al 1997), the Extended Finite Element Method (XFEM) (Belytschko and 

Black 1999; Moës et al 1999; Belytschko et al 2001), and the Generalized Finite Element 

Method (GFEM) (Strouboulis et al 2000 and 2001) both based on the Partition of Unity 

(PU) framework (Babuska et al 1994; Babuska and Melenk 1996) and the Discontinuous 

Galerkin (DG) (Oden et al 1998; Fish and Chen 2004) method. The multiscale methods 

based on the concurrent resolution of multiple scales are often called as embedded or 

concurrent.  

 

Figure 1: Application of multigrid-like 

method in design (Courtesy of Jacob Fish). 

 
Figure 2.  Crack branching MD (left) 

and MD/FEM bridging scale (right) 

simulation; Courtesy of Wing Kam Liu. 

 

Many of the multiscale technologies developed for bridging continuum scales can 

be applied to bridging discrete and continuum scales often needed in nanotechnology 

applications. Notable examples are some multigrid-like procedures (Fish and Chen 2004; 

Wagner and Liu 2003; Datta et al 2004) (see Figure 1), generalized mathematical 

homogenization theory (Fish and Schwob 2003), overlapping domain decomposition 

(Belytschko and Xiao 2003), bridging scale (McVeigh and Liu 2004; Karpov et al. 2004 

– see Figure 2) and multiscale enrichment based on partition of unity method (Fish and 

Yuan 2004). 

In parallel to the advancement of computational methods, physical principles of 

nanomechanics have been sought after continuously through the years. Defects such as 
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dislocations may be accounted for through gradients of strains (Fleck and Hutchinson 

1993), or directly through the dislocation elastic fields (Canova et al 1992; 1993; Huang 

and Ghoniem 2003; Zbib et al 1996; Rhee et al 1998). Away from the cores of 

dislocations, linear elasticity works fine and the continuum models usually suffice. Near 

the cores, nonlinear and non-plastic fields require atomistic descriptions. Driven by this 

duality of dislocation fields, several approaches toward modeling the mechanics of 

materials have been developed around embedding atomistic regions into a continuum 

(Shenoy et al 1999; Abraham et al 1998). As shown in Figure 3, a crack, whose 

propagation usually accompanies dislocation emissions, is represented by a pileup of 

point-like atoms. At the crack front, the atoms are composed of nuclei and electrons, the 

latter being treated using methods derived from quantum mechanics. Directly embedding 

atomic (and electronic) regions in a continuum is attractive when few dislocations are 

involved and when long-range strain fields are important. In parallel, large scale atomistic 

simulations (Figure 4) are advantageous in studying interactions of many dislocations.  

 

 
Figure 3: Quantum mechanical, 

atomistic, and continuum descriptions of 

a propagating crack; Source: Abraham et 

al 1998. 

 
Figure 4: Dislocations around cracks – 

billion atoms simulation; Source: Abraham, 

Duchaineau, and Diaz De La Rubia, 

www.llnl.gov/largevis/atoms/ductile-failure. 
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The long-range strain fields of multiple dislocations are partially shielded by each other 

and simple boundary conditions usually would suffice for mechanistic investigations. In 

more rigorous atomistic simulations, the long-range effects are treated through the 

application of the Green’s function method (Golubov et al 2001). Similar simulations are 

also applicable to point defects, interfaces, twinning, and crystal phase transformations 

(Yip et al 2001). The advancement in modeling nanoscale mechanics (or dislocation 

mechanics) relies on interactions across the disciplines of continuum mechanics, physics 

of atoms and electrons, and computation in a parallel computing environment. 

 

                   

 

 
Figure 5: Nanograin simulations at the atomic (left) and mesoscopic (right) levels; Source: 

Dieter Wolf’s presentation in this workshop.  

 

From nanoscale mechanics to mechanics of nanostructures, the focus shifts from 

dislocations to nanoscale structures. The first example is the transition from microscale 

polycrystals to nanograins. At the microscale, each grain in a polycrystal deforms through 

primarily dislocation activities. Through dislocation mechanics, strain gradient plasticity, 

and homogenization, the deformation can be modeled accurately. However, at the 

nanoscale (<100 nm), the deformation mechanisms change and grain boundary activities 

contribute substantially to the plastic deformation. As a result, the Hall-Petch relationship 

that governs the dislocation hardening in microscale polycrystals is inverted (Nieh et al 

1997). More interestingly, the seemingly unlikely deformation mechanism – twinning in 

face-centered-cubic metals (Figure 5 left) – becomes active in nanograins (Yamakov et al 
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2002; 2003). The new deformation mechanisms are identifiable through atomistic 

simulations. However, their impacts on materials at technologically relevant dimensions 

cannot be predicted by the atomistic simulations alone. Continuum models (Figure 5 right) 

that take into account of the new mechanisms are needed and are being developed 

(Moldovan, Wolf and Phillpot, 2003). As a result of this interdependence, the 

computational mechanics of nanograins links the physics of atoms and the mechanics of 

large scale continuum.  

Next to nanograins, nanotubes form an entirely different group of nanostructures. 

And their mechanics has been modeled at quantum mechanical, atomistic, and continuum 

levels. Based on quantum mechanics simulations, mechanical deformation changes the 

electronic structure of a nanotube and converts a semi-conducting nanotube to a 

conducting one (Peng and Cho 2002). Further increase of the mechanical deformation, as 

revealed by atomistic simulations, leads to propagation of Stone-Wales defects 

resembling the dislocation glide in crystals and to buckling of macroscopic shells (Figure 

6 left). This behavior is affected by the addition of chemical molecules (Figure 6 right), 

demonstrating the coupling of chemistry and mechanics. Adding cages like C60 molecules 

in a large nanotube may produce nanoscale pistons, and adding smaller nanotubes may 

result in wearless nanoscale bearings (Qian et al. 2001).  

 

  
Figure 6: Deformation of nanotubes without (left) and with molecules (upper right) or 

another tube (lower right); Source: Yakobson et al 1996 (left) and Ni et al 2002 (upper 

right), and Wing Kam Liu (lower right). 
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Efforts have been made to incorporate the atomic level deformation mechanism 

with continuum models (Arroyo and Belytschko 2002; 2003). However, it is not always 

so clear how to link atomic and continuum quantities. For example, the thickness of a 

nanotube wall is only one atomic layer, and its thickness is by no means unambiguously 

defined. The modeling of deformation mechanisms of nanotubes and their chemical 

interactions with molecules requires a combination of chemistry and physics. Extending 

the models to large stack of nanotubes requires additional branches of study: computation 

and mechanics.  

 

 
Figure 7a: Normalized Young’s moduli vs 

thickness of Cu nanoplates; Source: Zhou 

and Huang 2003. 

 
Figure 7b: Normalized Young’s moduli vs 

thickness of Si nanoplates; Source: Shim, 

Zhou, Huang, and Cale 2004. 

 

In between nanotubes and nanograins are nanoplates, and their one-dimensional 

equivalent, nanobeams. A nanoplate (nanobeam) is a crystal that is small in one (two) 

direction. Because of the small dimension, both elastic and plastic deformations are 

unique in comparison to their counterparts of large single crystals. It is easy to conceive 

that the elastic constant of a nanoplate is smaller than its bulk value. However, it may be 

counterintuitive to imagine the opposite. A combination of quantum mechanical and 

atomistic simulations show that the elastic constant of a nanoplate can be larger or 

smaller than the corresponding bulk value; Figure 7a. For covalent nanoplates, surface 
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reconstruction may reverse the stiffening behavior’ Figure 7b. The variation is the result 

of competition among bond loss, bond saturation, and reconstruction on solid surfaces 

(Zhou and Huang 2003; Shim et al 2004). As the mechanical load increases beyond the 

elastic domain, phase transformation takes place before dislocations glide as in bulk 

crystals (Diao et al 2003). The quantum mechanical and atomistic models suffice in most 

single elements of nanobeams or nanoplates. On the other hand, technologically relevant 

structures involve more than a single element. The modeling of a large number of 

nanoplates and nanobeams (possibly together with nanotubes and other structures) is 

beyond the capacity of the rigorous quantum mechanical and atomistic models. 

Continuum mechanics models that take into account of the atomic and electronic 

mechanisms – such as bond saturation and phase transformation at surfaces – are 

necessary, and they are in general unavailable, although efforts are underway.  

The aforementioned multiscale modeling of nanomechanics focuses primarily on 

the length scale. During materials fabrication, the time scale becomes extremely 

important. For example, strain of magnitude 0.7% may develop during thin film 

deposition (Huang et al 2003). The strain evolution depends on many fast processes, such 

as dislocation nucleation from surfaces (Liu et al 2002), which take place over pico-

seconds. On the other hand, a materials fabrication process takes much longer. A typical 

thin film deposition process would take minutes. The details of atomic processes – atomic 

vibration, diffusion, and displacement associated with dislocation activities – must be 

incorporated in modeling the materials fabrication (Huang 2004; Huang, Gilmer, and 

Diaz de la Rubia 1998). Some of the approaches have been described in the Handbook of 

Multiscale Materials Modeling (Yip 2004).  

In contrast to the rich development in computational nanomechanics research, the 

progress of computational nanomechanics education has been limited. Several 

universities have introduced graduate-level courses carrying the word “nanomechanics” 

in the title. However, it has not been demonstrated clearly how computational 

nanomechanics of materials, or more broadly, nanomechanics, will be incorporated into 

undergraduate curricula. Traditionally, mechanics is an element of mechanical and civil 

engineering departments. Taking a nanomechanics course, a student must have a 
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combined background of traditional continuum mechanics, materials science, physics, 

and chemistry. Because of this interdisciplinary nature, it is a challenge to fit a 

nanomechanics course into a particular engineering program.  

The glimpse of the past developments reveals the necessity of addressing the 

interdisciplinary research and education of computational nanomechanics. Such effort 

will benefit not only scientific advancement (presentation of Ken Chong in this 

workshop), but also national defense (presentation of Bruce LaMattina in this workshop), 

homeland security (presentation of Tomas Diaz de la Rubia in this workshop), energy 

development (presentation of Stephen Zinkle, in this workshop), and emerging 

nanotechnology (presentation of Max Lagally in this workshop).  

 

2. Description of the Workshop  
This workshop has three elements: a lecture session, two panel discussion 

sessions, and a poster session. The lectures cover the topic of computational 

nanomechanics from combined perspectives of physics, chemistry, materials, and 

computational mechanics. They serve the purpose of (1) providing an overview of 

computational nanomechanics from various perspectives, and (2) providing background 

education to junior researchers (primarily junior faculty members) on this 

interdisciplinary subject. Five lectures are offered. The lecture of Jacob Fish focuses on 

the state-of-the-art computational methods with a look forward look toward excitements 

and difficulties. The lecture of Sidney Yip illustrates the use of quantum mechanics and 

classical molecular dynamics in nanomechanics of crystals, such as phase transition 

under stress and dislocation activities. Turning to nanostructures, the lecture of Donald 

Brenner covers the atomic level researches on mechanics of nanotubes, including single 

nanotubes and those surrounded by chemical and biological molecules. Continuing the 

topic of nanostructures, Dieter Wolf presents an atomic level understanding of nanograins 

mechanics, and the current status of incorporating atomic mechanisms in continuum 

models. Following the three lectures on individual nanomechanics topics, Wing Kam Liu 

presents the current multiscale modeling approaches in linking the 
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physics/chemistry/materials understanding with continuum models. The final lecture, by 

Max Lagally, demonstrates the driving force of computational nanomechanics – the 

emerging nanotechnology. 

The lectures are followed by two panel discussions, which focus on where the 

computational nanomechanics should go in the future. The first panel – led by George 

Dvorak, Zdenek Bazant, and Ted Belytschko (secretary: Lucy Zhang) – focuses on the 

scientific aspect of the computational mechanics. In particular, the panel identifies 

outstanding issues and recommends mechanisms to tackle them. The second panel – led 

by Tomas Diaz de la Rubia, Bruce LaMattina, Steve Zinkle, and KJ Cho (secretary: 

Catalin Picu) – focuses on the broader impacts of computational nanomechanics. In 

particular, the panel discusses and identifies the need for computational nanomechanics 

in national defense, homeland security, energy production, and education of students. 

Small group discussions that follow the panel discussions further elaborate the pressing 

issues of research (led by Sidney Yip) and education (led by Suvranu De and Wilkins 

Aquino).  

The poster session provides a platform for junior researchers to showcase their 

recent developments on the subject of computational nanomechanics. The posters cover a 

broad range of topics, from nanoplates to nanotubes and to nanoscale mechanics.  

 A list of workshop participants is available at the end of this report. And the CD 

also contains a complete set of lecture notes and panel discussion slides.  

 

3. Outcome of the Workshop  
This workshop provides an interdisciplinary environment for researchers to 

interact and to learn. The first result is the education of junior researchers (primarily 

junior faculty members). The lectures and discussions serve to prepare the junior 

researchers for their research, and for their roles in educating the nation’s students in 

computational nanomechanics. The second result is the cross-fertilization of researchers 

in physics, chemistry, materials science, continuum mechanics, and computation. The 

participants from these fields interact with each other through lectures, panel discussions, 
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group discussions, and poster presentations. The third result is the direct communication 

of researchers and leading authorities from such governmental agencies as the National 

Science Foundation (Ken Chong), Army Research Office (Bruce LaMattina), and 

Department of Energy laboratories (Tomas Diaz de la Rubia and Stephen Zinkle).  

In more concrete form, the workshop has resulted in five specific 

recommendations to governmental agencies and to the community of computational 

nanomechanics.  

The first recommendation concerns the education of engineering students in the 

United States. This group of participants recommends that elements of nanomechanics be 

incorporated into existing courses, instead of being created as standalone courses at the 

undergraduate level. Many of the ingredients of nanomechanics can be included in 

existing courses, such as Solid Mechanics, Strength of Materials, and Introduction to 

Engineering Materials. At the graduate level, the flexibility is larger and new courses are 

feasible – and this is happening on many campuses. 

The second recommendation concerns the fabrication of machines from 

nanostructures. This group of participants recommends that nanomechanics in the 

fabrication processes deserve concerted effort within the academic community and 

beyond. Much has been learned over the past decade on individual elements of 

nanostructures – nanotubes are prime example. However, the fabrication of individual 

elements into operating machines remains a challenge. Such fabrication requires a 

fundamental understanding of physics, chemistry, materials, mechanical engineering 

design, and needless to say, the visionary support of government agencies.  

The third recommendation concerns the scale bridging in computational 

nanomechanics. This group of participants recommends that the time-scale bridging be a 

focus, as much as the length-scale if not more so. In micro/macro mechanics, the atomic 

time scale is usually decoupled from that of engineering processes. However, 

nanostructures’ intrinsic vibration time scale can be close to the atomic time scale. As a 

result, the atomic time scale becomes relevant, and needs to be incorporated into 

computational mechanics models. Such incorporation remains a challenge. 
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The fourth recommendation concerns the interface of nanomechanics with 

biomechanics. This group of participants identifies the interface mechanics of solid 

nanostructures and biological systems as an important area of research. Intrinsically, 

nanostructures have large surface areas (relative to volume), and they attract many 

biological and chemical molecules. This feature enables the use of nanostructures as 

biological sensors, for example. The mechanical responses of such interfaces depend on 

the mechanics of both the solids and the molecules. The computational mechanics 

community is in the position to reach out and tackle this interface issue. 

Finally, the fifth recommendation concerns the sincere cross fertilization of 

researchers in physics, chemistry, materials science, continuum mechanics, and 

computation. Many advanced computational methods are ready to make impacts in 

nanomechanics research. To realize the impacts, these methods must reach the reality, 

which is governed by physical principles. If computational methods are like skeletons of 

humans, physical principles (physics, chemistry, materials science, and continuum 

mechanics) are the soul of humans. A skeleton functions only when it has a soul. 

Similarly, a soul has to reside in a skeleton.  
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